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A B S T R A C T   

Bat populations in eastern North America have experienced precipitous declines following the spread of white- 
nose syndrome (WNS) and other population stressors. It is imperative to understand changes in bat populations 
as WNS spreads to provide appropriate guidance for species management. We developed generalized linear 
mixed-models of population trend and habitat associations for five indicator bat species on U.S. Fish and Wildlife 
Service Mobile Acoustic Bat Monitoring program routes across 86 sites in the southeastern United States from 
2012 to 2017. We estimated substantial declining annual trends in relative abundance of tricolored bat (Peri-
myotis subflavus; − 15.1% [− 20.6 to − 9.1% 95% CI]) and little brown bat (Myotis lucifugus; − 13.9% [− 22.9 to 
− 3.8% 95% CI]). Relative abundance of bat species increased throughout the summer, and associated positively 
with the amount of woody cover along survey routes in all but P. subflavus. Fewer evening bats (Nycticeius 
humeralis) and eastern red bats (Lasiurus borealis) were detected along more developed routes. Using these 
models, we conducted a prospective power analysis to examine sampling effort necessary to detect moderate to 
catastrophic population changes in bat populations. We estimated that it would require 10–20 years of surveys 
on 50–100 routes to detect 5% annual declines in all species at 80% power and α = 0.1. Detecting a 2.73% annual 
decline may require >200 surveys over >20 years; whereas a 1.14% annual decline was nearly impossible to 
detect via our program. We demonstrate and caution that underpowered monitoring programs may misrepresent 
the magnitude and/or sign of population trajectories. We recommend project-specific power analysis continue to 
be emphasized as an important study design component for effective long-term monitoring programs.   

1. Introduction 

Bat populations in eastern North America have experienced precip-
itous, catastrophic declines in the last decade following the emergence 
and spread of the fungal disease Pseudogymnoascus destructans (Pd), 
which causes white-nose syndrome (WNS) in hibernating bats as well as 
other factors (Frick et al., 2020; Ingersoll et al., 2013; O’Shea et al., 
2016). We now know the spread of WNS reduced bat population by as 
much as 6 million individuals across 20 or more species in eastern North 
America (U.S. Fish and Wildlife Service, 2019). However, other threats 
related to habitat change or loss, energy development, and environ-
mental contaminants likely exert detrimental influences on North 
American bat populations as well (Frick et al., 2020; O’Shea et al., 

2016). Effective monitoring programs that evaluate changes in pop-
ulations typically require significant time and fiscal resources. Moni-
toring programs designed to track population change and infer 
ecological significance must therefore take measures to minimize bias, 
and when possible optimize allocation of survey effort to allow for 
reliable and robust statistical inference within the constraints of avail-
able resources for implementation (D’Acunto et al., 2018; Field et al., 
2005). 

Bats present multiple monitoring challenges due to their aerial 
foraging habits, variable spatiotemporal activity patterns, and difficulty 
of/in discriminating individuals and species when surveyed non- 
invasively (Barlow et al., 2015; de Torrez et al., 2017; O’Shea et al., 
2003; Whitby et al., 2014). Notwithstanding the challenges, the bat 
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conservation community acknowledges the need to improve under-
standing of bat populations through standardized and robust monitoring 
strategies that minimize and account for these sources of variation 
(O’Shea et al., 2003). Since the early to mid-2000’s, monitoring pro-
grams have been implemented to track regional bat population trends 
around the world (e.g., Barlow et al., 2015; Battersby, 2010; Jones et al., 
2013; Roche et al., 2011; Rodhouse et al., 2012). The majority of these 
deploy stationary or acoustic monitoring strategies to assess changes in 
call counts as an index for population change over time. Prospective 
power analysis can play an important role in the design of long-term 
monitoring programs to help estimate the minimum amount and fre-
quency of sampling effort necessary to detect a specified trend with a 
desired level of precision under a specific type I error rate and power, 
assuming the modeling framework is reasonable (Magurran et al., 
2010). Understanding power of monitoring programs to estimate 
changes to bat populations is particularly important in the face of ex-
pected abrupt population declines from WNS spread, in addition to 
detecting gradual population declines from less precipitous threats. A 
failure to detect population trajectories, or to mischaracterize their 
severity, due to limited statistical power may translate into grievous 
errors in population management (Gibbs et al., 1998). Several regional 
and national bat monitoring programs have thus successfully imple-
mented power analyses to estimate their ability to detect moderate to 
substantial population changes (Banner et al., 2019; Barlow et al., 2015; 
International Union for Conservation of Nature, 2012; O’Donnell and 
Langton, 2003; Roche et al., 2011). 

The U.S. Fish and Wildlife Service (FWS) National Wildlife Refuge 
System initiated a Mobile Acoustic Bat Monitoring (MABM) program in 
2012 to track long-term bat population trends across National Wildlife 
Refuges in the Southeast and Midwest in anticipation of WNS spread 
across the U.S. (U.S. Fish and Wildlife Service, 2012). The MABM pro-
gram includes vehicle-based road transects conducted each summer on 
participating field stations, and provides the first comprehensive base-
line inventory of bat species occurrence on National Wildlife Refuges in 
the region (U.S. Fish and Wildlife Service, 2012). In this study, we 
analyzed MABM data to estimate population trends and habitat associ-
ations for a suite of bat species vulnerable to declines caused by WNS or 
other population stressors on National Wildlife Refuges and other FWS 
field stations. We used the resulting model parameter estimates to 
inform a prospective power analysis for five widespread bat species/ 
species groups to evaluate the sampling effort needed to reliably detect 
various levels of population declines. We discuss how similar assess-
ments (within the context of a given monitoring program) could be used 
to recommend strategies for long-term acoustic monitoring of bats in the 
eastern U.S. and in other regions. 

2. Materials and methods 

2.1. Survey methods 

The MABM program includes 86 survey routes at 63 FWS field sta-
tions (61 National Wildlife Refuges, 2 Ecological Services Field Offices) 
in 14 southeastern and midwestern states (Fig. 1). Sites were selected 
based on voluntary participation, but targeted field stations without 
presumed population impacts from WNS in 2011 but at risk for WNS as 
the disease spreads westward. We worked with FWS staff to design and 
implement mobile vehicular survey routes following recommendations 
in Britzke and Herzog (2009). Survey routes (33.3 ± 15.1 km [SD] in 
length [range 1.5 to 62.4 km]) were established on navigable, low- 
traffic-volume secondary and tertiary roads, and were designed inten-
tionally to intersect the range of representative ecosystem types on the 
field station while maintaining safety of surveyors (U.S. Fish and 
Wildlife Service, 2012). Forested roadways comprised much of the 
sampled area, but routes commonly included wetlands, lakes and moist- 
soil units, reforestation areas (pine and hardwood), agricultural planted 
fields, and fallow fields (Fig. S1). Open water and developed land cover 

also occurred frequently along roadsides, particularly when routes left 
refuge boundaries. 

Survey routes were typically sampled once or twice annually (though 
occasionally thrice to six times) from June 1 to July 15 from 2012 to 
2017. We designed sampling periods to optimize detectability while also 
minimizing variability by excluding times when non-resident, migratory 
bats were present, and also to minimize sampling of newly-volant young 
(U.S. Fish and Wildlife Service, 2012). Repeated sampling events on a 
route were separated by a minimum of 4 days and not > 20 days. Annual 
sampling events on a route occurred within a 21-day period similar to 
the initial year of sampling to promote temporal consistency across 
years. Surveys began 30 min after local sunset and were typically 
completed within two hours. Field surveyors implemented continuous 
acoustic sampling for bats while driving along the survey route at a 
constant speed of 32 kmh− 1 to maintain consistency in bat call quality 
and quantity and allow for assumptions that unique individuals were 
detected to facilitate estimates of relative abundance (Britzke and Her-
zog, 2009). Surveys were conducted only when wind speeds were < 24 
kmh− 1 and not during rain or fog events. 

We used an Anabat SD2 detector (Titley Scientific, Inc.) with a 
vehicle roof-mounted directional microphone oriented vertically up-
ward to record ultrasonic echolocations during mobile survey routes. 
The Anabat SD2 detector uses zero-crossing analysis to record ultrasonic 
vocalizations, and logs detected call files based on pre-determined fre-
quency range divisions (Britzke, 2004; Britzke et al., 2013). Call files 
were referenced to location and time on a 1-sec interval by connecting 
an external GPS unit to the Anabat SD2 Detector. 

2.2. Bat species classification 

We extracted potential bat call files and associated location and time 
information using the CFCread Storage ZCAIM interface version 4.4n 
software (Corben, 2011). We set call parameter characterizations in the 
software to a smooth value of 50, a 1-sec maximum time between calls, 
and a minimum line length of 5 in CFCRead to better quantify pulses 
representative of an individual bat. As recommended by Britzke et al. 
(2013), we attempted to use only search-phase calls in species identifi-
cation by employing a conservative call filtering approach to eliminate 
pulse fragments and other low quality pulses. We classified call se-
quences using BCID Eastern USA Version 2.7 software (Allen, 2015). At 
present, BCID can classify 13 of 16 bat species expected to occur within 
MABM study area. Northern yellow bat (Lasiurus intermedius), Seminole 
bat (L. seminolus), and Brazilian free-tailed bat (Tadarida brasiliensis) are 

Fig. 1. Centroids of Mobile Acoustic Bat Monitoring program routes (gray dots) 
on U.S. Fish and Wildlife Service field stations in 14 U.S. states (2012–2017). 
Base map courtesy of Carto. 
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absent from the software. BCID cannot distinguish eastern red bat 
(Lasiurus borealis) from Seminole bat in areas of range overlap. Thus in 
southern portions of the study area we were likely modeling eastern red 
bat and Seminole bat as a single species. Similarly, BCID cannot classify 
Brazilian free-tailed bat, thus some low-frequency species such as big 
brown bat (Eptesicus fuscus) are at risk for misclassification. However, 
we expect Brazilian free-tailed bat prevalence to be low on refuges as 
they are uncommon in these environments, and are higher-elevation 
flyers such that they may not be detected by mobile acoustic de-
tectors. We set the minimum number of call pulses present in a file for 
classification to 5 to improve accuracy of identification and limit un-
known classifications. To further reduce the number of false-positive 
detections, we constrained classifications at each field station to the 
suite of bat species potentially present during the sampling period based 
on species range maps and expert opinions of regional bat researchers 
(Table S1). 

2.3. Analysis of population trend and habitat associations 

We restricted our analyses of trends in species counts (as an index of 
population trend) separately to eastern red bat/Seminole bat (hereafter, 
the LABO/LASE complex), evening bat (Nycticeius humeralis; NYHU), 
tricolored bat (Perimyotis subflavus; PESU), big brown bat (EPFU), and 
little brown bat (Myotis lucifugus; MYLU). We selected these species 
because they were widespread among MABM routes, consistently 
detected but with variable activity intensities among routes, and, with 
the exception of LABO/LASE and NYHU, are potentially susceptible to 
widespread population crashes due to WNS impacts. We modeled an 
index of relative abundance based on the count of search-phase echo-
locations using generalized linear mixed models (GLMM; Bolker et al., 
2009; Bolker, 2015). We examined the relationship between bat echo-
location counts and survey year (the trend in relative abundance; vari-
able year in model below) and survey date within a year (converted to 
weeks since 1 June; wk_jun1). We used 2016 National Land Cover Data 
(Yang et al., 2018) to quantify the proportion of total woody habitat 
(upland deciduous, evergreen, and mixed forest, and forested wetland) 
and developed (urban) habitat (low, medium, and high intensity 
developed and open space) around each route, weighted by a Gaussian 
smoothing kernel (Chandler and Hepinstall-Cymermann, 2016) with a 
standard deviation of 250 m. This produced for each route an estimate of 
the proportional cover of wooded (wood_250) and developed 
(urban_250) habitat within roughly 750 m of the route, but with areas 
closer to the route contributing more to the estimate (Fig. S2). We used 
this approach to identify the habitats close to the survey route, which we 
expected to most influence relative abundance, while also considering a 
larger landscape context of the route. We included survey route length as 
an offset in the GLMM, effectively converting our interpretation of 
relative abundance to a per km basis. We included random intercepts for 
survey year and route to account for region-wide variation in relative 
abundance among years and consistent differences in relative abun-
dance among routes, respectively. Finally, we allowed annual trends in 
relative abundance to vary randomly among routes around an overall 
trend (i.e., a random slope). Specifically, our model for each species took 
the form: 
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where Cijk is the count of an individual of a species along survey route i 
on survey occasion j in survey year k, Li is the length of survey route i in 
km, and µijk is the expected, or mean, count of individuals of a species in 
a Poisson (Pois) or negative binomial (NB) distribution; θ is the over-
dispersion parameter of the negative binomial distribution. The βs are 
the fixed effect parameters estimated for the intercept and variables of 
interest. The us are the zero mean normally-distributed random effects, 
specifically the random intercept by year (u0,k) and route (u0,i), and the 
random slope of the population trend by route (u1,i). We assumed the 
latter two random effects may be correlated, expressed by ρ. We fixed ρ 
at zero for models including MYLU to improve model convergence; 
MYLU model convergence was impaired due to smaller sample size (i.e., 
number of stations) resulting from a more limited geographic range. 

We explored two negative binomial models (NB1, NB2) in addition 
to the conventional Poisson model for the count-generating process to 
consider potential overdispersion in the relative abundance. The 
distinction between the NB1 and NB2 model is how the variance of 
echolocation counts relates to the mean of those counts. In NB2 (the 
“standard” negative binomial model) the variance increases quadrati-
cally with the mean, whereas in the NB1 model, the variance increases 
linearly with the mean (Hilbe, 2011). All models used a log-link function 
and we assumed a constant detection probability (or that covariates 
adequately account for variable detection probability; Barker et al., 
2018). We also assumed mobile survey routes adequately represented 
bat populations on and around refuges during the survey season, and 
that acoustic detectors adequately detected individual search phase calls 
within a detectable distance from the vehicle. We also assumed that each 
survey route location was independent, with the exception of the few 
refuges where multiple sequential routes were in place. In places where 
multiple routes existed, these were typically surveyed on separate nights 
or out of sequence. We selected among count distribution models using 
Akaike’s Information Criteria (AIC; Akaike, 1973). We assessed model 
residual and other diagnostic plots to further confirm an adequate model 
fit prior to inference and the use of parameter estimates in the pro-
spective power analysis. We fit GLMM models using the glmmTMB 
package (Brooks et al., 2017) in R (R Core Team, 2018); the bbmle 
(Bolker, 2017) and DHARMa (Hartig, 2019) packages facilitated AIC test 
comparisons and GLMM diagnostics. 

2.4. Prospective power analysis 

We used the fixed parameter estimates from best-fitting GLMM 
models for each species to establish a baseline relative abundance for the 
prospective power analysis. Specifically, we estimated the average 
relative abundance for a survey conducted in late June 2012 (average 
survey date; initial year) on a route of average length in a landscape 
context of average wood and urban cover. The NB overdispersion and 
random effect estimates informed the power analysis by incorporating 
how relative abundance varied among sites and years, as well as how 
estimates of population trends varied among sites. We conducted the 
power analysis for four bat groups: LABO/LASE, EPFU, MYLU, and PESU 
and NYHU; we grouped PESU and NYHU into a complex due to the 
similarity in their expected baseline relative abundance as well as the 
overdispersion and random effect parameter estimates of their respec-
tive GLMM models. We generated 1000 simulations of annual bat de-
clines of 1.14%, 2.73%, and 5% to maintain consistency with other 
documented power analyses (e.g., Barlow et al., 2015). We simulated 
sampling effort of 50, 100, and 200 routes, surveyed annually or bien-
nially (every other year) on 2 or 3 occasions per season to evaluate how 
survey effort influenced our ability to detect declines and affected the 
accuracy of the estimates of those declines. We assumed a negative 
binomial (NB2) count-generating process, linear population declines, 
constant detection probability, and independence among routes. For 
each simulation, we evaluated whether the model detected a population 
trend at α = 0.10 and, if so, the estimated magnitude and trajectory (i.e., 
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increase or decrease) of the trend estimate (Gelman and Carlin 2014). 
We selected a more conservative α to err on the side of detecting pop-
ulation changes when they were not actually occurring (i.e., we 
accepted a slightly higher probability of false positives than is typical). 
Table S2 provides an overview of the power analysis setup. We con-
ducted the simulations using tools provided by the simsalapar package 
in R (Hofert and Maechler, 2016). 

3. Results 

Collaborators in the MABM program conducted 736 acoustic surveys 
across 86 individual routes at 63 FWS field stations in 14 U.S. states from 
2012 to 2017. On average, collaborators operated 60 routes annually 
(range: 53 – 70). We detected a total of 33 921 individuals from search- 
phase bat calls identified to 13 species across routes and years 
(Table S3). Survey effort averaged 123 surveys/year and ranged from 
102 surveys in 2017 to a peak of 157 surveys in 2013. 

3.1. Species trends and habitat associations 

Model selection criteria and diagnostics identified the NB2 model as 
the best fit for all species (Table S4). We detected a substantial annual 
decline in relative abundance for PESU (− 15.1%; 95% CI: − 20.6 to 
− 9.1%) and MYLU (− 13.9%; 95% CI: − 22.9 to − 3.8% (Fig. 2; Table S5). 
Relative abundance increased throughout the survey period each year in 
all species except NYHU, suggesting within-season temporal increases in 
bat activity, abundance (i.e., volant young), or detectability (Fig. 2; 
Table S5). Bat relative abundance associated positively with woody 

cover along routes in all species except PESU. The association was 
particularly apparent in EPFU, with a 35.8% increase in relative abun-
dance (95% CI: 16.1 to 58.9%) for every 10% increase in surrounding 
woody cover. The association with developed cover along the route was 
negative in NYHU and LABO/LASE, with 58.5% (95% CI: 36.5 to 72.9%) 
and 38% (95% CI: 9.7 to 57.4%) declines in relative abundance for every 
10% incremental increase in developed land cover, respectively (Fig. 2; 
Table S5). EPFU relative abundance exhibited a large positive associa-
tion with developed cover along routes, but the association was 
extremely variable. 

3.2. Power analysis 

The MABM program’s ability to detect population change varied 
considerably with the magnitude of population change, number of in-
dependent survey routes, and the duration of the monitoring program 
(Fig. 3). Under our model, power simulations suggested that 50–100 
survey routes may be required to detect a catastrophic decline (-5% 
annual trend) in our focal bat species over 20 years with adequate (80%) 
statistical power (Fig. 3C). To detect that same decline in only 10 years 
of monitoring required at least 100 survey routes for most species 
(Fig. 3C). However, the simulations suggested > 200 survey routes were 
required to detect a more modest, but still substantial, decline of 2.73% 
annually after 20 years; detecting such a decline in 10 years required far 
greater effort (Fig. 3B). Declines on the scale of 1.14% annually (25% 
over 25 years) were practically impossible to detect given the current 
MABM program implementation (Fig. 3A). Relative to the number of 
routes operated, the power analysis suggested modest power gains from 

Fig. 2. Percent change in the relative abundance of five bat species based on generalized linear mixed model parameter estimates for annual trend, survey date, and 
weighted forest and urban cover along USFWS Mobile Acoustic Bat Monitoring program survey routes. Changes associated with survey date and land cover are scaled 
per week since June 1 and per 10 percent increment in cover, respectively. The horizontal dashed line suggests no association. Bat species include big brown bat 
(Eptesicus fuscus; EPFU), eastern red bat (Lasiurus borealis; LABO; includes Seminole bat [Lasiurus seminolus] where co-occurring), little brown bat (Myotis lucifugus; 
MYLU), evening bat (Nycticeius humeralis; NYHU), and tricolored bat (Perimyotis subflavus; PESU). 
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Fig. 3. Outcomes of power analysis based on 2–3 annual or biennial surveys at 50, 100, and 200 sites over 10 and 20 year periods for big brown bat (Eptesicus fuscus; 
EPFU), eastern red bat (Lasiurus borealis; LABO; includes Seminole bat [Lasiurus seminolus] where co-occurring), little brown bat (Myotis lucifugus; MYLU), evening bat 
(Nycticeius humeralis; NYHU), and tricolored bat (Perimyotis subflavus; PESU) as part of the U.S. Fish and Wildlife Service Mobile Acoustic Bat Monitoring pro-
gram (2012–2017). 
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conducting annual surveys versus biennial surveys, and little benefit of 
conducting surveys on more than two occasions within a year (Fig. 3). 

In addition to failing to detect modest population declines, we sus-
pect underpowered monitoring also produced inflated estimates of 
trends, or, at lease such large CI’s that recommendations for manage-
ment action would be undermined when detected and, in cases of very 
low power, estimated trends of incorrect direction. We illustrate with an 
example MABM program of 50 routes surveyed twice annually for 10 
years (Fig. 4). Such a program possessed 50 – 75% power to detect a 
catastrophic 5% annual decline, but low (~25%) and very low (~15%) 
power to detect 2.73% and 1.14% annual declines, respectively. In the 
catastrophic context, declines are estimated relatively well (over-
estimated by 20–30%) and very seldom identified incorrectly as popu-
lation increased (Fig. 4, bottom panel). However, under more modest 
population decline scenarios, bias in the trend estimator increased 
dramatically, as did the tendency of the estimator to incorrectly suggest 
population growth. Declines were overestimated by 200% and 500% 

when they were correctly detected, and incorrectly identified as popu-
lation growth in ~ 2% and 17% of “significant” trends at 2.73% and 
1.14% declines, respectively (Fig. 4). 

4. Discussion 

4.1. Southeastern bat population trends and habitat associations 

Either WNS or the fungal agent Pseudogymnoascus destructans has 
previously been detected in 12 of 13 of our target species in the MABM 
program in parts of their range, though a range of outcomes from benign 
effects in some species to large-scale population crashes in others result 
from P. destructans exposure (U.S. Fish and Wildlife Service, 2019). 
Other threats related to habitat loss, energy development, and changing 
climate are of equivalent concern. Thus, tracking regional population 
trends in species threatened by myriad stressors is paramount. We 
detected 8 of those 13 species so infrequently as to preclude robust 

Fig. 4. Power to detect population change (proportion of trends detected) and trend estimates under simulated annual declines of 1.14 – 5% for big brown bat 
(Eptesicus fuscus; EPFU), eastern red bat (Lasiurus borealis; LABO; includes Seminole bat [Lasiurus seminolus] where co-occurring), little brown bat (Myotis lucifugus; 
MYLU), evening bat (Nycticeius humeralis; NYHU), and tricolored bat (Perimyotis subflavus; PESU), monitored via a simulated USFWS Mobile Acoustic Bat Monitoring 
program surveying 50 routes twice annually for 10 years. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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population analysis (Rafinesque’s big-eared bat [Corynorhinus rafi-
nesquii], Ozark big-eared bat [C. townsendii ingens], hoary bat [Lasiurus 
cinereus], gray bat [Myotis grisescens], eastern small-footed bat 
[M. leibii], northern long-eared bat [M. septentrionalis], Indiana bat 
[M. sodalis], and southeastern myotis [M. austroriparius]). This is con-
cerning as three of these species have present listing status under the U. 
S. Endangered Species Act, and all 13 species were considered as a state 
Species of Greatest Conservation Need (SGCN) in one or more states in 
our study region as of 2015. This left us to restrict our trend analysis to 
five species (big brown bat, eastern red bat/Seminole bat, little brown 
bat, evening bat, tricolored bat), presuming they are representative of 
the remaining species of interest. 

Tricolored bats are obligate cave/deep crevice hibernators in 
northern parts of their range, and many hibernacula have fallen sus-
ceptible to WNS. However, in the Southeast recent research shows 
tricolored bats regularly use trees, bridges, and culverts for winter 
torpor, and investigations regarding WNS impacts in these populations 
are ongoing (Newman, 2020). Despite being widespread in eastern 
North America, populations have declined an estimated 30–70% since 
2006 (NatureServe, 2019). Little brown bats are considered globally 
endangered by IUCN, with predicted declines of as much as 94% in the 
next 12–18 years due to effects of WNS (Solari, 2018). They are obligate 
cave hibernators and often roost in colonies sized in the hundreds of 
thousands or more, thus have been drastically impacted by the spread of 
WNS (Solari, 2018). Ford et al. (2011) also showed significant declines 
in little brown bat after WNS impacted colonies in New York, but did not 
detect significant declines in tricolored bat or eastern red bat/Seminole 
bat populations. We found substantial declines in tricolored bat (15.1% 
annual declines) and little brown bat (13.9% annual declines) on FWS 
field stations over the 6 year monitoring effort. However, we urge 
caution in interpreting the estimated declines of tricolored and little 
brown bat without fully assessing the caveats associated with our power 
analysis (further discussion in Section 4.3 below). The MABM program 
effort analyzed here is roughly analogous to the power and estimate 
accuracy scenario summarized in Fig. 4. A consequence of our under-
powered work to date is that we have likely overestimated declines of 
tricolored and little brown bats, perhaps by up to 30% or more. 

With respect to habitat, we found positive associations with devel-
oped cover in big brown bats. This finding is supported by previous radio 
telemetry efforts that suggest human-made structures are important 
roost habitat for big brown bats (Duchamp et al., 2004). We also found 
positive associations with woody cover in big brown bats, which sug-
gests a propensity to forage in wooded areas, though many other studies 
suggest big brown bats to be habitat generalists (see Agosta, 2002 and 
citations therein). We found negative associations with developed and 
positive associations with woody cover in evening bats, which tends to 
roost in tree cavities and forage in forests (Duchamp et al., 2004; Hein 
et al., 2009). Thus threats of human development and concomitant 
forest loss/fragmentation could have precipitous negative effects on 
evening bat populations. Evening bats have also been shown to have 
negative associations with tree density and positive associations with 
fire frequency, suggesting they may prefer open forests (Starbuck et al., 
2015). 

With the exception of one species (little brown bat), all species 
showed evidence of within-season increases in relative abundance 
across MABM routes (as also demonstrated by Skalak et al., 2012). We 
expect these results stem primarily from changes in bat maternal status 
and the volancy of young, but cannot determine causation without 
further study. Additionally, we suggest that site selection bias (Fournier 
et al., 2019) may also contribute to the size of estimated declines in these 
species. However, it is worth noting that sites were not selected specif-
ically to detect individual bat species, but more so to represent the range 
of habitats within and nearby southeastern National Wildlife Refuges. 
Any site selection bias here would be related to variation in habitat cover 
on refuge lands vs. other non-protected areas in the region. Again, we 
encourage caution in when interpreting of these results due to 

aforementioned issues with potentially underpowered estimators. 

4.2. Large-scale bat monitoring 

Large-scale bat monitoring programs can be found worldwide and 
often are effective in detecting trends of populations of interest. These 
include standardized, large-scale acoustic monitoring programs in the U. 
K., Ireland, and eastern Europe (Barlow et al., 2015; Jones et al., 2013; 
Roche et al., 2011). The recently developed North American Bat Moni-
toring Program (NABat) is an example of one such program that pro-
vides a probabilistic and spatially-balanced grid-based approach, 
overlaying a continuous grid of 10x10km sampling cells across North 
America (Banner et al., 2019; Loeb et al., 2015). Despite critically- 
important continental monitoring efforts like NABat, it remains imper-
ative to have programs that monitor population trends at the scale of 
management such that adaptive management approaches can be taken 
to retain and recover bat populations. The FWS MABM program was 
implemented to provide a regional standardized framework for bat 
monitoring on FWS field stations. However, the program was initiated 
prior to the development and launch of the NABat program. Release of a 
program such as NABat at a continental scale is critically important and 
a significant advancement for the North American bat monitoring 
community. It is now necessary to consider Refuge monitoring and 
management needs in light of the capability to spatially subset the 
NABat sampling grid on Refuge properties. It will also be important to 
evaluate the efficacy of stationary vs. mobile acoustic detectors in the 
two programs in effectively tracking population trends. Thus some 
creative and proactive thinking must be done to determine if there is a fit 
for mission-specific monitoring efforts like FWS MABM under a larger 
monitoring framework like NABat to ensure congruence of data and 
improve inference to regional bat population trends. 

Though methods vary for each of the aforementioned monitoring 
programs, all make the assumption that they have implemented a robust 
and repeatable survey design that will allow for reliable inference 
regarding bat population changes over time. However, the challenges 
associated with reliably detecting bats come in many forms, including 
seasonal and daily variation in bat activity (Hayes, 1997; Skalak et al., 
2012), variation from type and sensitivity of bat detector (Adams et al., 
2012; Barclay, 1999; Barlow et al., 2015), variation in automated clas-
sification systems (Russo and Voigt, 2016), and roadside detection bias 
(Berthinussen and Altringham, 2012; D’Acunto et al., 2018; de Torrez 
et al., 2017; Roche et al., 2011; Stahlschmidt and Brühl, 2012). Auto-
mated classification could be particularly problematic in this case as we 
must assume that call filtering parameters and classifiers produced no 
false negative or false positive species identifications within the BCID 
software program. Though we did account for this potential issue using 
species grouping, other false positives and/or negatives, if widespread, 
could artificially inflate or deflate relative abundance estimates. This 
could be improved in future monitoring efforts through vetting against 
known calls at the site level. The design and analysis presented here also 
does not account for imperfect detection as a potential source of varia-
tion, which may risk underestimation of measures of abundance and 
introduce bias in assessing interactions with environmental variables 
(Rodhouse et al., 2012; Yoccoz et al., 2001). Though most MABM survey 
routes were sampled twice or more per season, we were not able to 
assess detectability within a single year in this analysis. However, pro-
vided that our interest was in assessing trend as a state variable of in-
terest, measures of detectability were not required. We also could not 
fully assume population closure within each survey season, hence why 
we did not pursue a N-mixture model approach to analysis. Neverthe-
less, mobile transects can be efficient; they require little training, allow 
surveyors to cover a greater distance in a shorter amount of time, may 
detect greater numbers of species compared to other approaches, and 
can account for spatial variation by georeferencing detection locations 
(D’Acunto et al., 2018; Whitby et al., 2014). Given the caveats, the 
utility of road-based acoustic surveys for bats depends on monitoring 
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objectives in the context of available monitoring resources and the cadre 
of potential sources of variation in the data (Whitby et al. 2014). 

4.3. Statistical power to detect population change 

What constitutes acceptable statistical power for a monitoring pro-
gram requires determining the level of risk one is willing to take in 
failing to detect a significant trend, and/or detecting exaggerated or 
incorrect trend estimates (Britzke et al., 2013; Gelman and Carlin, 2014; 
O’Donnell and Langton, 2003). Understanding a given monitoring pro-
gram’s power to detect a desired trend prior to implementing that pro-
gram will help ensure available resources align with required sampling 
effort to increase efficiencies and effectiveness (Magurran et al., 2010). 
However, power analyses should be continually updated based on best 
available data, which includes refinement of models defining parameter 
coefficients that inform the power analysis. Nevertheless, prospective 
power analysis should be considered as a fundamental component to 
planning and execution of any long-term monitoring program (Legg and 
Nagy, 2006). 

We sought to examine whether the current sampling effort under the 
FWS MABM program provided sufficient statistical power to detect 
specified levels of population change for bat species in the eastern U.S., 
as well as estimate the sampling effort needed to detect those changes. 
We found we could detect catastrophic (-5%) annual declines with 80% 
statistical power by surveying 50–100 sites twice annually over a 10 
year or greater period for four of the five most-commonly detected 
species (tricolored bat, evening bat, big brown bat, little brown bat). To 
detect this same level of decline in eastern red bat/Seminole bat would 
require sampling over a 20-year period despite detecting>10 times the 
number of individuals compared to little brown bat. We also estimated it 
would take > 20 years and > 200 sampling sites to detect population 
declines of lesser magnitude for all species examined. Thus, the current 
FWS MABM program is likely capable of detecting major population 
changes in the most widespread and common bat species, but may be 
insufficient to track changes of lesser magnitude in common species or 
any magnitude of population change in more localized or uncommonly 
detected species. Note that these estimates are contingent upon the fit of 
the statistical model to the populations represented by the MABM pro-
gram. Simulations in our power analysis did not account for habitat or 
time covariates, nor were we able to assess the sensitivity of the power 
analysis to the original inclusion of habitat and time covariates in 
original parameter estimates. Nevertheless, this relative lack of power in 
detecting all but the most severe population declines highlights an un-
derappreciated but universal phenomenon—magnitude or exaggeration 
errors (see Gelman and Carlin, 2014) that characterize estimates of 
population change in underpowered monitoring programs. The magni-
tude of “significant” population changes may be exaggerated, often 
exceedingly so, in underpowered monitoring programs and, in the worst 
cases, may suggest a trend in the opposite direction of reality. This 
phenomenon applies equally to other parameters estimated along with 
population change (e.g., habitat associations, detection probability, 
etc.). However, given the contingency of power analyses estimates on 
the statistical model on MABM program data, we encourage other efforts 
to consider developing a new project-specific model for other power 
analysis endeavors. 

Results from other bat monitoring efforts are similar to what we 
observed in the MABM program, despite differences in monitoring 
strategy. Banner et al. (2019) demonstrated that regional sampling ef-
forts (>181 stationary sites) under NABat tended to be adequately 
powered, but a subset of < 30 sites on National Forest lands resulted in 
underpowered estimates of change in occupancy. The U.K. National Bat 
Monitoring Program found that 200 monitoring sites surveyed using 
multiple methods over 9 years were sufficient to detect 5% annual de-
clines in three of their more common species, but that upwards of 18 
years would be required to detect declines of lesser magnitude at 80% 
power (Barlow et al., 2015). A similar analysis for the Irish Bat 

Monitoring Programme suggested catastrophic declines could be 
detected in as few as 8 years with 25 survey grids containing 20 mobile 
transects each (Roche et al., 2011). Though these examples cover a 
range of bat monitoring methods and are not directly comparable to 
MABM program transects, the consistent message that very large and 
long-term monitoring programs may be paramount in detecting changes 
of lesser magnitude (e.g., 1–3% per year), with recommendations of as 
many as 500 or more sample sites monitored over more than a decade to 
effectively track change (O’Donnell and Langton, 2003). 

5. Conclusions 

Monitoring programs should make every effort to maximize accuracy 
while minimizing misguided inference about population trends 
(O’Donnell and Langton, 2003). A successful monitoring program 
should be repeatable, straightforward, and developed on the basis of a 
long-term commitment to estimation and evaluation of species trends 
over time. It should also be conducted at the appropriate scale of 
application to meet programmatic objectives (e.g., informing Refuge 
management vs. detecting regional or continental trends). We showed 
that significant commitments to long-term monitoring efforts are 
necessary to even detect the most catastrophic of declines in bat pop-
ulations. Statistical power is a serious issue for monitoring bat pop-
ulations and continues to deserve consideration prior to the 
implementation of large-scale monitoring efforts. 
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