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Abstract We present a new algorithm for boosting gen-
eralized additive models for location, scale and shape
(GAMLSS) that allows to incorporate stability selection,
an increasingly popular way to obtain stable sets of covari-
ates while controlling the per-family error rate. The model
is fitted repeatedly to subsampled data, and variables with
high selection frequencies are extracted. To apply stability
selection to boosted GAMLSS, we develop a new “noncycli-
cal” fitting algorithm that incorporates an additional selection
step of the best-fitting distribution parameter in each itera-
tion. This new algorithm has the additional advantage that
optimizing the tuning parameters of boosting is reduced
from amulti-dimensional to a one-dimensional problemwith
vastly decreased complexity. The performance of the novel
algorithm is evaluated in an extensive simulation study. We
apply this new algorithm to a study to estimate abundance
of common eider in Massachusetts, USA, featuring excess
zeros, overdispersion, nonlinearity and spatiotemporal struc-
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tures. Eider abundance is estimated via boosted GAMLSS,
allowing both mean and overdispersion to be regressed on
covariates. Stability selection is used to obtain a sparse set
of stable predictors.
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1 Introduction

In view of the growing size and complexity of modern
databases, statistical modeling is increasingly faced with
heteroscedasticity issues and a large number of available
modeling options. In ecology, for example, it is often
observed that outcomevariables do not only showdifferences
inmean conditions but also tend to be highly variable across
different geographical features or states of a combination
of covariates (e.g., Osorio and Galiano 2012). In addition,
ecological databases typically contain large numbers of cor-
related predictor variables that need to be carefully chosen
for possible incorporation in a statistical regression model
(Aho et al. 2014; Dormann et al. 2013; Murtaugh 2009.

A convenient approach to address both heteroscedasticity
and variable selection in statistical regression models is the
combination of GAMLSS modeling with gradient boosting
algorithms. GAMLSS, which refer to “generalized additive
models for location, scale and shape” (Rigby andStasinopou-
los 2005), are a modeling technique that relates not only
the mean but all parameters of the outcome distribution to
the available covariates. Consequently, GAMLSS simulta-
neously fit different submodels for the location, scale and
shape parameters of the conditional distribution. Gradient
boosting, on the other hand, has become a popular tool for
data-driven variable selection in generalized additive models
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(Bühlmann and Hothorn 2007). The most important feature
of gradient boosting is the ability of the algorithm to perform
variable selection in each iteration, so that model fitting and
variable selection are accomplished in a single algorithmic
procedure. To combine GAMLSS with gradient boosting,
we have developed the gamboostLSS algorithm (Mayr et al.
2012) and have implemented this procedure in the R add-on
package gamboostLSS (Hofner et al. 2016, 2017).

A remaining problem of gradient boosting is the tendency
of boosting algorithms to select a relatively high number
of false-positive variables and to include too many nonin-
formative covariates in a statistical regression model. This
issue, which has been raised in several previous articles
(Bühlmann and Hothorn 2010; Bühlmann and Yu 2006;
Huang et al. 2012), is particularly relevant formodel building
in the GAMLSS framework, as the inclusion of noninforma-
tive false positives in the submodels for the scale and shape
parameters may result in overfitting with a highly inflated
variance. As a consequence, it is crucial to include only those
covariates in these submodels that show a relevant effect on
the outcome parameter of interest. From an algorithmic point
of view, this problem is aggravated by the conventional fitting
procedure of gamboostLSS: Although the fitting procedure
proposed inMayr et al. (2012) incorporates different iteration
numbers for each of the involved submodels, the algorithm
starts with mandatory updates of each submodel at the begin-
ning of the procedure. Consequently, due to the tendency of
gradient boosting to include relatively high numbers of non-
informative covariates, false-positive variables may enter a
GAMLSS submodel at a very early stage, even before the
iteration number of the submodel is finally reached.

To address these issues and to enforce sparsity in GAML
SS, we propose a novel procedure that incorporates stability
selection (Meinshausen and Bühlmann 2010) in gamboost-
LSS. Stability selection is a generic method that investigates
the importance of covariates in a statistical model by repeat-
edly subsampling the data. Sparsity is enforced by including
only the most “stable” covariates, in the final statistical
model. Importantly, under appropriate regularity conditions,
stability selection can be tuned such that the expected number
of false-positive covariates is controlled in a mathematically
rigorousway.Aswill be demonstrated in Sect. 3 of this paper,
the same property holds in the gamboostLSS framework.

To combine gamboostLSS with stability selection, we
present an improved “noncyclical” fitting procedure for
gamboostLSS that addresses the problem of possible false-
positive inclusions at early stages of the algorithm. In contrast
to the original “cyclical” gamboostLSS algorithm presented
in Mayr et al. (2012), the new version of gamboostLSS
not only performs variable selection in each iteration but
additionally an iteration-wise selection of the best submodel
(location, scale, or shape) that leads to the largest improve-
ment in model fit. As a consequence, sparsity is not only

enforced by the inclusion of the most “stable” covariates in
the GAMLSS submodels but also by a data-driven choice
of iteration-wise submodel updates. It is this procedure that
theoretically justifies and thus enables the use of stability
selection in gamboostLSS.

A further advantage of “noncyclical” fitting is that the
maximum number of boosting iterations for each submodel
does not have to be specified individually for each sub-
model (as in the originally proposed “cyclical” variant),
instead only the overall number of iterations must be chosen
optimally. Tuning the complete model reduces from a multi-
dimensional to a one-dimensional optimization problem,
regardless of the number of submodels, therefore drastically
reducing the amount of needed runtime for model selection.

A similar approach for noncyclical fitting of multi-
parameter models was recently suggested by Messner et al.
(2017) for the specific application of ensemble post-process-
ing for weather forecasts. Our proposed method generalizes
this approach, allowing gamboostLSS to be combined with
stability selection in a generic way that applies to a large
number of outcome distributions.

The rest of this paper is organized as follows: In Sect. 2,
we describe the gradient boosting, GAMLSS and stability
selection techniques and show how to combine the three
approaches in a single algorithm. In addition, we provide
details on the new gamboostLSS fitting procedure. Results
of extensive simulation studies are presented in Sect. 3.
They demonstrate that combining gamboostLSS with stabil-
ity selection results in prediction models that are both easy
to interpret and show a favorable behavior with regard to
variable selection. They also show that the new gamboost-
LSS fitting procedure results in a large decrease in runtime
while showing similar empirical convergence rates as the tra-
ditional gamboostLSS procedure. We present an application
of the proposed algorithm to a spatiotemporal data set on sea
duck abundance in Nantucket Sound, USA, in Sect. 4. Sec-
tion 5 summarizes the main findings and provides details on
the implementation of the proposed methodology in the R
package gamboostLSS (Hofner et al. 2017).

2 Methods

2.1 Gradient boosting

Gradient boosting is a supervised learning technique that
combines an ensemble of base-learners to estimate complex
statistical dependencies. Base-learners should beweak in the
sense that they only possess moderate prediction accuracy,
usually assumed to be at least slightly better than a random
predictor, but on the other hand easy and fast to fit. Base-
learners can be, for example, simple linear regressionmodels,
regression splines with low degrees of freedom, or stumps
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(i.e., trees with only one split; Bühlmann and Hothorn 2007).
One base-learner by itself will usually not be enough to fit a
well-performing statistical model to the data, but a boosted
combination of a large number can compete with other state-
of-the-art algorithms on many tasks, e.g., classification (Li
2012) or image recognition (Opelt et al. 2004).

Let D = {(x (i), y(i))}i=1,...,n be a learning data set sam-
pled i.i.d. from a distribution over the joint spaceX ×Y , with
a p-dimensional input spaceX = (X1×X2×· · ·×Xp) and a
usually one-dimensional output space Y . The response vari-
able is estimated through an additive model whereE(y|x) =
g−1(η(x)), with link function g and additive predictor η :
X → R,

η(x) = β0 +
J∑

j=1

f j (x |β j ), (1)

with a constant intercept coefficient β0 and additive effects
f j (x |β j ) derived from the pre-defined set of base-learners.
These are usually (semi-)parametric effects, e.g., splines,
with parameter vector β j . Note that some effects may later
be estimated as 0, i.e., f j (x |β j ) = 0. In many cases, each
base-learner is defined on exactly one element X j of X and
thus Eq. 1 simplifies to

η(x) = β0 +
p∑

j=1

f j (x j |β j ). (2)

To estimate the parameters β1, . . . , βJ of the additive predic-
tor, the boosting algorithm minimizes the empirical risk R
which is the loss ρ : Y × R → R summed over all training
data:

R =
n∑

i=1

ρ(y(i), η(x (i))). (3)

The loss function measures the discrepancy between the true
outcome y(i) and the additive predictor η(x (i)). Examples
are the absolute loss |y(i) − η(x (i))|, leading to a regression
model for the median, the quadratic loss (y(i) − η(x (i)))2,
leading to the conventional (mean) regression model or the
binomial loss−y(i)η(x (i))+log(1+exp(η(x (i)))) often used
in classification of binary outcomes y(i) ∈ {0, 1}. Very often
the loss is derived from the negative log likelihood of the
distribution ofY , depending on the desired model (Friedman
et al. 2000).

While there exist different types of gradient boosting algo-
rithms (Mayr et al. 2014a, b), in this article we will focus
on component-wise gradient boosting (Bühlmann and Yu
2003; Bühlmann and Hothorn 2007). The main idea is to
fit simple regression-type base-learners h(·) one by one to
the negative gradient vector of the loss u = (u(1), . . . , u(n))

instead of to the true outcomes y = (y(1), . . . , y(n)). Base-
learners are chosen in such a way that they approximate the
effect f̂ (x |β j ) = ∑

m h j (·). The negative gradient vector
in iteration m, evaluated at the estimated additive predictor
η̂[m−1](x (i)), is defined as

u =
(

− ∂

∂η
ρ(y, η)

∣∣∣∣
η=η̂[m−1](x (i)), y=y(i)

)

i=1,...,n

.

In every boosting iteration, each base-learner is fitted
separately to the negative gradient vector by least-squares
or penalized least-squares regression. The best-fitting base-
learner is selected based on the residual sum of squares with
respect to u

j∗ = argmin
j∈1...J

n∑

i=1

(u(i) − ĥ j (x
(i)))2. (4)

Only the best-performing base-learner ĥ j∗(x)will be used to
update the current additive predictor,

η̂[m] = η̂[m−1] + sl · ĥ j∗(x) (5)

where 0 < sl � 1 denotes the step length (learning rate;
usually sl = 0.1). The choice of sl is not of critical importance
as long as it is sufficiently small (Schmid and Hothorn 2008).

The main tuning parameter for gradient boosting algo-
rithms is the number of iterationsm that are performed before
the algorithm is stopped (denoted as mstop). The selection of
mstop has a crucial influence on the prediction performance
of the model. Ifmstop is set too small, the model cannot fully
incorporate the influence of the effects on the response and
will consequently have a poor performance. On the other
hand, too many iterations will result in overfitting, which
hampers the interpretation and generalizability of the model.

2.2 GAMLSS

In classical generalized additive models (GAM, Hastie and
Tibshirani 1990), it is assumed that the conditional distri-
bution of Y depends only on one parameter, usually the
conditional mean. If the distribution hasmultiple parameters,
all but one are considered to be constant nuisance parameters.
This assumptionwill not always hold and should be critically
examined, e.g., the assumption of constant variance is not
adequate for heteroscedastic data. Potential dependency of
the scale (and shape) parameter(s) of a distribution on pre-
dictors can be modeled in a similar way to the conditional
mean (i.e., location parameter). This extended model class
is called generalized additive models for location, scale and
shape (GAMLSS, Rigby and Stasinopoulos 2005).
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The framework hence fits different prediction functions
to multiple distribution parameters θ = (θ1, . . . , θk), k =
1, . . . , 4. Given a conditional density p(y|θ), one estimates
additive predictors (cf. Eq. 1) for each of the parameters θk

ηθk = β0θk +
Jk∑

j=1

f jθk (x |β jθk ), k = 1, . . . , 4. (6)

Typically, these models are estimated via penalized likeli-
hood. For details on the fitting algorithm, see Rigby et al.
(2008).

Even though thesemodels can be applied to a large number
of different situations, and the available fitting algorithms
are extremely powerful, they still inherit some shortcomings
from the penalized likelihood approach:

1. It is not possible to estimate models with more covariates
than observations.

2. Maximum likelihood estimation does not feature an
embedded variable selection procedure. For GAMLSS
models, the standard AIC has been expanded to the gen-
eralized AIC (GAIC) in Rigby and Stasinopoulos (2005)
to be applied to multi-dimensional prediction functions.
Variable selection via information criteria has several
shortcomings, for example the inclusion of toomanynon-
informative variables (Anderson and Burnham 2002).

3. Whether tomodel predictors in a linear or nonlinear fash-
ion is not trivial. Unnecessary complexity increases the
danger of overfitting as well as computation time. Again,
a generalized criterion like GAICmust be used to choose
between linear and nonlinear terms.

2.3 Boosted GAMLSS

To deal with these issues, gradient boosting can be used to fit
the model instead of the standard maximum likelihood algo-
rithm.Based on an approach proposed in Schmid et al. (2010)
to fit zero-inflated count models, in Mayr et al. (2012) the
author developed a general algorithm tofitmulti-dimensional
prediction functions with component-wise gradient boosting
(see Algorithm 1).

The basic idea is to cycle through the distribution parame-
ters θ in the fitting process. Partial derivatives with respect to
each of the additive predictors are used as response vectors.
In each iteration of the algorithm, the best-fitting base-learner
is determined for each distribution parameter, while all other
parameters stay fixed. For a four parametric distribution, the
update in boosting iterationm+1maybe sketched as follows:

∂

∂ηθ1

ρ(y, θ̂ [m]
1 , θ̂

[m]
2 , θ̂

[m]
3 , θ̂

[m]
4 )

update−→ η
[m+1]
θ1

∂

∂ηθ2

ρ(y, θ̂ [m+1]
1 , θ̂

[m]
2 , θ̂

[m]
3 , θ̂

[m]
4 )

update−→ η
[m+1]
θ2

∂

∂ηθ3

ρ(y, θ̂ [m+1]
1 , θ̂

[m+1]
2 , θ̂

[m]
3 , θ̂

[m]
4 )

update−→ η
[m+1]
θ3

∂

∂ηθ4

ρ(y, θ̂ [m+1]
1 , θ̂

[m+1]
2 , θ̂

[m+1]
3 , θ̂

[m]
4 )

update−→ η
[m+1]
θ4

.

Unfortunately, separate stopping values for each distribution
parameter have to be specified, as the prediction functions
will most likely require different levels of complexity and
hence a different number of boosting iterations. In case of
multi-dimensional boosting, the different mstop,k values are
not independent of each other and have to be jointly opti-
mized. The usually applied grid search scales exponentially
with the number of distribution parameters and can quickly
become computationally demanding or even infeasible.

Algorithm 1 “Cyclical” component-wise gradient boosting
in multiple dimensions (Mayr et al. 2012)

Initialize

1. Initialize the additive predictors η̂[0] = (η̂
[0]
θ1
, η̂[0]

θ2
, η̂[0]

θ3
, η̂[0]

θ4
) with

offset values.
2. For each distribution parameter θk , k = 1, . . . , 4, specify a set of

base-learners, i.e., for parameter θk define hk1(x (i)), . . . , hk Jk (x
(i))

where Jk is the cardinality of the set of base-learners specified for
θk .

Boosting in multiple dimensions
For m = 1 to max(mstop,1, . . . ,mstop,4):

3. For k = 1 to 4:

(a) If m > mstop,k set η̂
[m]
θk

:= η̂
[m−1]
θk

and skip this iteration.

Else compute negative partial derivative− ∂
∂ηθk

ρ(y, η) an plug

in the current estimates η̂[m−1](·):

uk =
(

∂

∂ηθk

ρ(y, η)

∣∣∣
η=η̂[m−1](x (i)),y=y(i)

)

i=1,...,n

(b) Fit each of the base-learners uk contained in the set of base-
learners specified for the distribution parameter θk in step (2)
to the negative gradient vector.

(c) Select the component j∗ that best fits the negative partial
derivative vector according to the residual sum of squares, i.e.,
select the base-learner hkj∗ defined by

j∗ = argmin
j∈1,...,Jk

n∑

i=1

(u(i)
k − ĥk j (x

(i)))2.

(d) Update the additive predictor ηθk

η̂
[m]
θk

= η̂
[m−1]
θk

+ sl · ĥk j∗ (x),
where sl is the step length (typically sl = 0.1), and update the
current estimates for step 4(a):

η̂
[m−1]
θk

= η̂
[m]
θk

.
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2.4 Stability selection

Selecting an optimal subset of explanatory variables is a cru-
cial step in almost every supervised data analysis problem.
Especially in situations with a large number of covariates, it
is often almost impossible to get meaningful results without
automatic, or at least semiautomatic, selection of the most
relevant predictors. Selection of covariate subsets based on
modified R2 criteria (e.g., the AIC) can be unstable, see,
for example, Flack and Chang (1987), and tend to select too
many covariates (see, e.g., Mayr et al. 2012).

Component-wise boosting algorithms are one solution to
select predictors in high dimensions and/or p > n problems.
As only the best-fitting base-learner is selected to update the
model in each boosting step, as discussed above, variable
selection can be obtained by stopping the algorithm early
enough. Usually, this is done via cross-validation methods,
selecting the stopping iteration that optimizes the empirical
risk on test data (predictive risk). Hence, boosting with early
stopping via cross-validation offers away to performvariable
selection while fitting the model. Nonetheless, boosted mod-
els stopped early via cross-validation still have a tendency to
include too many noise variables, particularly in rather low-
dimensional settings with few possible predictors and many
observations (n > p; Bühlmann et al. 2014).

2.4.1 Stability selection for boosted GAM models

To circumvent the problems mentioned above, the stabil-
ity selection approach was developed (Meinshausen and
Bühlmann 2010; Shah and Samworth 2013). This generic
algorithm can be applied to boosting and all other variable
selection methods. The main idea of stability selection is
to run the selection algorithm on multiple subsamples of
the original data. Highly relevant base-learners should be
selected in (almost) all subsamples.

Stability selection in combination with boosting was
investigated in Hofner et al. (2015) and is outlined in Algo-
rithm 2. In the first step, B random subsets of size �n/2� are
drawn, and a boosting model is fitted to each one. The model
fit is interrupted as soon as q different base-learners have
entered the model. For each base-learner, the selection fre-
quency π̂ j is the fraction of subsets in which the base-learner
j was selected (7). An effect is included in the model if the
selection frequency exceeds the user-specified threshold πthr

(8).
This approach leads to upper bounds for the per-family

error rate (PFER) E(V ), where V is the number of nonin-
formative base-learners wrongly included in the model (i.e.,
false positives; Meinshausen and Bühlmann 2010):

E(V ) ≤ q2

(2πthr − 1)p
. (9)

Algorithm 2 Stability selection for model-based boosting
1. For b = 1, . . . , B:

(a) Draw a subset of size �n/2� from the data
(b) Fit a boostingmodel until the number of selected base-learners

is equal to q or the number of iterations reaches a pre-specified
number (mstop).

2. Compute the relative selection frequencies per base-learner:

π̂ j := 1

B

B∑

b=1

I{ j∈Ŝb}, (7)

where Ŝb denotes the set of selected base-learners in iteration b.
3. Select base-learners with a selection frequency of at least πthr,

which yields a set of stable covariates

Ŝstable := { j : π̂ j ≥ πthr}. (8)

Under certain assumptions, refined, less conservative error
bounds can be derived (Shah and Samworth 2013).

One of the main difficulties of stability selection in prac-
tice is the choice of the parameters q, πthr and PFER. Even
though only two of the three parameters need to be specified
(the last one can then be derived under equality in (9)), their
choice is not trivial and not always intuitive for the user.

Meinshausen and Bühlmann (2010) state that the thresh-
old should be πthr ∈ (0.6, 0.9) and has little influence on the
result. The number of base-learners q has to be sufficiently
large, i.e., q should be at least as big as the number of infor-
mative variables in the data (or better to say the number of
corresponding base-learners). This is obviously a problem in
practical applications, in which the number of informative
variables (or base-learners) is usually unknown. One nice
property is that if q is fixed, πthr and the PFER can be varied
without the need to refit the model. A general advice would
thus be to choose q relatively large or to make sure that q is
large enough for a given combination of πthr and PFER. Sim-
ulation studies like Hofner et al. (2015), Mayr et al. (2016)
have shown that the PFER is quite conservative and the true
number of false positives will most likely be much smaller
than the specified value.

In practical applications, two different approaches to
select the parameters are typically used. Both assume that
the number of covariates to include, q, is chosen intuitively
by the user: The first idea is to look at the calculated inclusion
frequencies π̂ j and look for a breakpoint in the decreasing
order of the values. The threshold can be then chosen so
that all covariates with inclusion frequencies larger than the
breakpoint are included, and the resulting PFER is only used
as an additional information. The second possibility is to fix
the PFER as a conservative upper bound for the expected
number of false-positive base-learners. Hofner et al. (2015)
provide some rationales for the selection of the PFER by
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relating it to common error types, the per-comparison error
(i.e., the type I error without multiplicity correction) and the
family-wise error rate (i.e., with conservative multiplicity
correction).

2.4.2 Stability selection for boosted GAMLSS models

The question of variable selection in (boosted) GAMLSS
models is even more critical than in regular (GAM) models,
as the question of including a base-learner implies not only if
the base-learner should be used in themodel at all, but also for
whichdistributionparameter(s) it shouldbeused.Essentially,
the number of possible base-learners doubles in a distribution
with two parameters, triples in one with three parameters and
so on. This is particularly challenging in situations with a
large amount of base-learners and in p > n situations.

Themethod of fitting boostedGAMLSSmodels in a cycli-
cal way leads to a severe problem when used in combination
with stability selection. In each iteration of the algorithm,
all distribution parameters will receive an additional base-
learner as long as theirmstop limit is not exceeded. Thismeans
that base-learners are added to the model that might have a
rather small importance compared to base-learners for other
distribution parameters. This becomes especially relevant if
the number of informative base-learners varies substantially
between distribution parameters.

Regarding the maximum number of base-learners q to
be considered in the model, base-learners are counted sepa-
rately for each distribution parameter, so a base-learner that
is selected for the location and scale parameter counts as two
different base-learners. Arguably, one might circumvent this
problem by choosing a higher value for q, but still less sta-
ble base-learners could be selected instead of stable ones for
other distribution parameters. One aspect of the problem is
that the possible model improvement between different dis-
tribution parameters is not considered. A careful selection of
mstop per distribution parameter might resolve the problem,
but the process would still be unstable because the margin
of base-learner selection in later stages of the algorithm is
quite small. Furthermore, this is not in line with the gen-
eral approach of stability selection where the standard tuning
parameters do not play an important role.

2.5 Noncyclical fitting for boosted GAMLSS

The main idea to solve the previously stated problems of the
cyclical fitting approach is to update only one distribution
parameter in each iteration, i.e., the distribution parameter
with a base-learner that leads to the highest loss reduction
over all distribution parameters and base-learners.

Usually, base-learners are selected by comparing their
residual sum of squares with respect to the negative gradient
vector (inner loss). This is done in step (4c) of Algorithm 1

where the different base-learners are compared. However,
the residual sum of squares cannot be used to compare the
fit of base-learners over different distribution parameters, as
the gradients are not comparable.
Inner loss One solution is to compare the empirical risks
(i.e., the negative log likelihood of the modeled distribu-
tion) after the update with the best-fitting base-learners that
have been selected via the residual sum of squares for each
distribution parameter: first, for each distribution parameter
the best-performing base-learner is selected via the resid-
ual sum of squares of the base-learner fit with respect to
the gradient vector. Then, the potential improvement in the
empirical loss Δρ is compared for all selected base-learners
(i.e., over all distribution parameters). Finally, only the best-
fitting base-learner (w.r.t. the inner loss) which leads to the
highest improvement (w.r.t. the outer loss) is updated. The
base-learner selection for each distribution parameter is still
done with the inner loss (i.e., the residual sum of squares),
and this algorithm will be called analogously.
Outer loss Choosing base-learners and parameters with
respect to two different optimization criteria may not always
lead to the best possible update. A better solution could be
to use a criterion which can compare all base-learners for all
distribution parameters. As stated, the inner loss cannot be
used for such a comparison. However, the empirical loss (i.e.,
the negative log likelihood of the modeled distribution) can
be used to compare both, the base-learners within a distribu-
tion parameter and over the different distribution parameters.
Now, the negative gradients are used to estimate all base-
learners ĥ11, . . . , ĥ1p1 , ĥ21, . . . , ĥ4p4 . The improvement in
the empirical risk is then calculated for each base-learner
of every distribution parameter, and only the overall best-
performing base-learner (w.r.t. the outer loss) is updated.
Instead of the using the inner loss, the whole selection pro-
cess is hence based on the outer loss (empirical risk), and the
method is named accordingly.

The noncyclical fitting algorithm is shown inAlgorithm 3.
The inner and outer variants solely differ in step (3c).

A major advantage of both noncyclical variants compared
to the cyclical fitting algorithm (Algorithm 1) is that mstop

is always scalar. The updates of each distribution parame-
ter estimate are adaptively chosen. The optimal partitioning
(and sequence) of base-learners between different param-
eters is done automatically while fitting the model. Such
a scalar optimization can be done very efficiently using
standard cross-validation methods without the need for a
multi-dimensional grid search.

3 Simulation study

In a first step, we carry out simulations to evaluate the per-
formance of the new noncyclical fitting algorithms regarding
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Algorithm 3 “Noncyclical” component-wise gradient boost-
ing in multiple dimensions
Initialize

1. Initialize the additive predictors η̂[0] = (η̂
[0]
θ1
, η̂[0]

θ2
, η̂[0]

θ3
, η̂[0]

θ4
) with

offset values.
2. For each distribution parameter θk , k = 1, . . . , 4, specify a set

of base-learners, i.e., for parameter θk define hk1(·), . . . , hk Jk (·)
where Jk is the cardinality of the set of base-learners specified for
θk .

Boosting in multiple dimensions
For m = 1 to mstop:

3. For k = 1 to 4:

(a) Compute negative partial derivatives − ∂
∂ηθk

ρ(y, η) and plug

in the current estimates η̂[m−1](·):

uk =
(

∂

∂ηθk

ρ(y, η)

∣∣∣
η=η̂[m−1](x (i)),y=y(i)

)

i=1,...,n

(b) Fit each of the base-learners uk contained in the set of base-
learners specified for the distribution parameter θk in step (2)
to the negative gradient vector.

(c) Select the best-fitting base-learner hkj∗ either by
• the inner loss, i.e., the residual sum of squares of the

base-learner fit w.r.t. uk :

j∗ = argmin
j∈1,...,Jk

n∑

i=1

(u(i)
k − ĥk j (x

(i)))2

• the outer loss, i.e., the negative log likelihood of themod-
eled distribution after the potential update:

j∗ = argmin
j∈1,...,Jk

n∑

i=1

ρ
(
y(i), η̂

[m−1]
θk

(x (i)) + sl · ĥk j (x (i))
)

(d) Compute the possible improvement of this update regarding
the outer loss

Δρk =
n∑

i=1

ρ
(
y(i), η̂

[m−1]
θk

(x (i)) + sl · ĥk j∗ (x (i))
)

4. Update, depending on the value of the loss reduction
k∗ = argmink∈1,...,4(Δρk)only the overall best-fitting base-learner:

η̂
[m]
θk∗ = η̂

[m−1]
θk∗ + sl · ĥk∗ j∗ (x)

5. Set η̂[m]
θk

:= η̂
[m−1]
θk

for all k 
= k∗.

convergence, convergence speed and runtime. In a second
step, we analyze the variable selection properties if the new
variant is combined with stability selection.

3.1 Performance of the noncyclical algorithms

The response yi is drawn from a normal distribution
N (μi , σi ), where μi and σi depend on 4 covariates each.
The xi , i = 1, . . . , 6, are drawn independently from a uni-
form distribution on [−1, 1], i.e., n = 500 samples are drawn
independently from U (−1, 1). Two covariates x3 and x4 are
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Fig. 1 Distribution of coefficient estimates from B = 100 simulation
runs. The dashed lines show the true parameters. All algorithms were
fitted until convergence

shared between both μi and σi , i.e., they are informative for
both parameters, which means that there are pinf = 6 infor-
mative variables overall. The resulting predictors look like

μi = x1i + 2x2i + 0.5x3i − x4i

log(σi ) = 0.5x3i + 0.25x4i − 0.25x5i − 0.5x6i .

ConvergenceFirst, we compare the newnoncyclical boosting
algorithms and the cyclical approach with the classical esti-
mation method based on penalized maximum likelihood (as
implemented in the R package gamlss, Rigby et al. 2008).
The results from B = 100 simulation runs are shown in
Fig. 1. All four methods converge to the correct solution.
Convergence speed Second, we compare the convergence
speed in terms of boosting iterations. Therefore, nonin-
formative variables are added to the model. Four settings
are considered with pn-inf = 0, 50, 250 and 500 additional
noninformative covariates independently sampled from a
U (−1, 1) distribution. With n = 500 observations, both
pn-inf = 250 and pn-inf = 500 are high-dimensional situ-
ations (p > n) as we have two distribution parameters. In
Fig. 2, the mean risk over 100 simulated data sets is plot-
ted against the number of iterations. The mstop value of the
cyclical variant shown in Fig. 2 is the sum of the number of
updates on every distribution parameter. Outer and inner loss
variants of the noncyclical algorithm have exactly the same
risk profiles in all four settings. Compared to the cyclical
algorithm, the convergence is faster in the first 500 itera-
tions. After more than 500 iterations, the risk reduction is the
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Fig. 2 Convergence speed (regarding the number of boosting
iterations m) with 6 informative and pn-inf = 0, 50, 250 and 500 addi-
tional noise variables

same for all three methods. The margin between cyclical and
both noncyclical algorithms decreases with a larger number
of noise variables.
Runtime The main computational effort of the algorithms
is the base-learner selection, which is different for all
three methods. The runtime is evaluated in context of
cross-validation, which allows us to see how out-of-bag
error and runtime behave in different settings. We consider
two scenarios—a two-dimensional (d = 2) and a three-
dimensional (d = 3) distribution. The data are generated
according to setting 1A and 3A of Sect. 3.2. In each sce-
nario, we sample n = 500 observations, but do not add any
additional noise variables. For optimization of the model,
the out-of-bag prediction error is estimated via a 25-fold
bootstrap. A grid of length 10 is created for the cyclical
model, with an maximum mstop of 300 for each distribution
parameter. The grid is created with the make.grid func-
tion in gamboostLSS (refer to the package documentation
for details on the arrangement of the grid points). To allow
the same complexity for all variants, the noncyclical methods
are allowed up to mstop = d × 300 iterations.

The results of the benchmark are shown in Fig. 3. The
out-of-bag error in the two-dimensional setting is similar
for all three methods, but the average number of optimal
iterations is considerably smaller for the noncyclical meth-
ods (cyclical:360 vs.inner:306,outer:308). In the
three-dimensional setting, the outer variant of the noncycli-
cal fitting results in a higher error, whereas the inner variant
results in a slightly better performance compared to the cycli-
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Fig. 3 Out-of-bag error (top) and optimization time in minutes (loga-
rithmic scale) Out-of-bag error (top) and optimization time in minutes
(logarithmic scale; bottom) for a two-dimensional (left) and three-
dimensional distribution (right) based on 25-fold bootstrap

cal variant. In this setting, the optimal number of iterations is
similar for all threemethods but near the edge of the searched
grid. It is possible that the outer variant will result in a com-
parable out-of-bag error if the range of the grid is increased.

3.2 Stability selection

After having analyzed the properties of the new noncycli-
cal boosting algorithms for fitting GAMLSS, the remaining
question is how they perform when combined with stability
selection. In the previous subsection, no differences in the
model fit (Fig. 1) and convergence speed (Fig. 2) could be
observed, but the optimization results in a three-dimensional
setting (Fig. 3) was worse for the outer algorithm. Taking
this into consideration, we will only compare the inner and
cyclical algorithms here.

We consider three different distributions: (1) the normal
distributionwith two parameters, meanμi and standard devi-
ation σi . (2) The negative binomial distribution with two
parameters, mean μi and dispersion σi . (3) The zero-inflated
negative binomial (ZINB) distributionwith three parameters,
μi and σi identical to the negative binomial distribution, and
probability for zero inflation νi .

Furthermore, two different partitions of six informative
covariates shared between the distribution parameters are
evaluated:

(A) Balanced case For normal and negative binomial dis-
tribution, both μi and σi depended on four informative
covariates, where two are shared. In case of the ZINB
distribution, each parameter depends on three informa-
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tive covariates, each sharing one with the other two
parameters.

(B) Unbalanced case For normal and negative binomial dis-
tribution, μi depends on five informative covariates,
whileσi onlyonone.No informative variables are shared
between the two parameters. For the ZINB distribution,
μi depends on five informative variables, σi on two, and
νi on one. One variable is shared across all three param-
eters.

To summarize these different scenarios for a total of six
informative variables, x1, . . . , x6:

(1A, 2A)

μi = β1μx1i + β2μx2i + β3μx3i + β4μx4i

log(σi ) = β3σ x3i + β4σ x4i + β5σ x5i + β6σ x6i

(1B, 2B)

log(μi ) = β1μx1i + β2μx2i + β3μx3i

+β4μx4i + β5μx5i

log(σi ) = β6σ x6i

(3A)

log(μi ) = β1μx1i + β2μx2i + β3μx3i

log(σi ) = β3σ x3i + β4σ x4i + β5σ x5i

logit(νi ) = β1νx1i + β5νx5i + β6νx6i

(3B)

log(μi ) = β1μx1i + β2μx2i + β3μx3i

+β4μx4i + β5μx5i

log(σi ) = β5σ x5i + β6σ x6i

logit(νi ) = β6νx6i

Toevaluate the performanceof stability selection, twocriteria
have to be considered. First, the true-positive rate, or the
number of true positives (TP, number of correctly identified
informative variable). Secondly, the false-positive rate, or
the number of false positives (FP, number of noninformative
variable that were selected as stable predictors).

Considering stability selection, the most obvious con-
trol parameter to influence false- and true-positive rates is
the threshold πthr. To evaluate the algorithms depending on
the settings of stability selection, we consider several val-
ues for the number of variables to be included in the model
q ∈ {8, 15, 25, 50} and the threshold πthr (varying between
0.55 and 0.99 in steps of 0.01). A third factor is the number of
(noise) variables in the model: We consider p = 50, 250 or
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Fig. 4 Balanced case with normal distribution (Scenario 1A)

500 covariates (including the six informative ones). It should
be noted that the actual number of possible base-learners
is p times the number of distribution parameters, as each
covariate can be included in one or more additive predictors.
To visualize the simulation results, the progress of true and
false positives is plotted against the threshold πthr for dif-
ferent values of p and q, where true and false positives are
aggregated over all distribution parameters. Separate figures
for each distribution parameter can be found in the web sup-
plement. The setting p = 50, q = 50 is an edge case that
would work for some assumptions about the distribution of
selection probabilities (Shah and Samworth 2013). Since the
practical application of this scenario is doubtful, we will not
further examine it here.

3.2.1 Results

It can be observed that with increasing threshold πthr, the
number of true positives as well as the number of false pos-
itives declines in all six scenarios (see Figs. 4, 5, 6, 7, 8, 9)
and for every combination of p and q. This is a natural con-
sequence as the threshold is increased, the less variables are
selected. Furthermore, the PFER,which is to be controlled by
stability selection, decreases with increasing threshold πthr

(see Eq. 9).
Results for the normal distribution

In the balanced case (Fig. 4), a higher number of true posi-
tives for the noncyclical algorithm can be observed compared
to the cyclical algorithm for most simulation settings. Partic-
ularly for smaller q values (q ∈ {8, 15}), the true-positive
rate was always higher compared to the cyclical variant. For
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Fig. 5 Unbalanced case with normal distribution (Scenario 1B)
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Fig. 6 Balanced case with negative binomial distribution (Scenario
2A)

higher q values, the margin decreases and for the highest
settings both methods have approximately the same progres-
sion over πthr, with slightly better results for the cyclical
algorithm. Overall, the number of true positives increases
with a higher value of q. Hofner et al. (2015) found similar
results for boosting with one-dimensional prediction func-
tions, but also showed that the true-positive rate decreases
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Fig. 7 Unbalanced case with negative binomial distribution (Scenario
2B)
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Fig. 8 Balanced case with zero-inflated negative binomial distribution
(Scenario 3A)

again after a certain value of q. This could not be verified for
the multi-dimensional case.

The false-positive rate is extremely low for both methods,
especially in the high-dimensional settings. The noncyclical
fitting method has a constantly smaller or identical false-
positive rate and the difference reduces for higher πthr, as
expected. For all settings, the false-positive rate reaches zero
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Fig. 9 Unbalanced case with zero-inflated negative binomial distribu-
tion (Scenario 3B)

for a threshold higher than 0.9. The setting with the highest
false-positive rate is p = 50 and q = 25, a low-dimensional
case with a relatively high threshold. This is also the only
settingwhere on average all 8 informative variables are found
(for a threshold of 0.55).

In the unbalanced case (Fig. 5), the results are similar.
The number of false positives for the noncyclical variant is
lower compared to the cyclical approach in almost all set-
tings. The main difference between the balanced and the
unbalanced case is that the number of true positives for the
p = 50, q = 25 setting is almost identical in the former
case, whereas in the latter case the noncyclical variant is
dominating the cyclical algorithm. On the other hand, in the
high-dimensional case with a small q (p = 500, q = 8) both
fitting methods have about the same true-positive rate for all
possible threshold values.

In summary, it can be seen that the novel noncyclical
algorithm is generally better, but at least comparable, to the
cyclicalmethod in identifying informative variables. Further-
more, the false-positive rate is less or identical to the cyclical
method. For some scenarios in which the scale parameter σi
is higher compared to the location parameter μi , the cyclical
variant achieves slightly better results than the noncyclical
variant regarding true positives at high p and q values.
Results for the negative binomial distribution

In the balanced case of the negative binomial distribution
(Fig. 6), the number of true positives is almost identical for
the cyclical and noncyclical algorithm in all settings, while
the number of true positives is generally quite high. It varies
between 6 and 8 in almost all settings, except for the cases

with a very small value of q (=8) where it is slightly lower.
This is consistent with the results for stability selection with
one-dimensional boosting (Hofner et al. 2015; Mayr et al.
2016). The number of false positives in the noncyclical vari-
ants is smaller or identical to the cyclical variant in all tested
settings.

In the unbalanced case, the true-positive rate of the non-
cyclical variant is higher compared to the cyclical variant,
whereas the difference reduces for larger values of q. The
results are consistent with the normal distribution setting but
with smaller differences between both methods.
Results for ZINB distribution

The third considered distribution in our simulation setting
is the ZINB distribution, which features three parameters to
fit.

In Fig. 8, the results for the balanced case (scenario 3A)
are visualized. The tendency of a larger number true positives
in the noncyclical variant, which could be observed for both
two-parametric distributions, is not present here. For all set-
tings, except for high-dimensional settings with a low q (i.e.,
p = 250, 500 and q = 50), the cyclical variant has a higher
number of true positives. Additionally, the number of false
positives is constantly higher for the noncyclical variant. For
the unbalanced setting (Fig. 9), the results are similar in true
positives and negatives between both methods.

The number of true positives is overall considerably
smaller compared to all other simulation settings. Particu-
larly in the high-dimensional cases (p = 250, 500), not even
half of the informative covariates are found. In settings with
smaller q, the number of true positives is lower than two.
Both algorithms obtain approximately the same number of
true positives for all settings. In cases with a very low or a
very high number q (i.e., q = 8 or 50), the noncyclical algo-
rithm is slightly better. The number of false positives is very
high, especially compared with the number of true positives
and particularly for the unbalanced case. For a lot of settings,
more than half of the included variables are noninformative.
The number of false positives is higher for the noncyclical
case. The difference are especially present in settings with
a high q and a low πthr, those settings which also have the
highest numbers of true positives.

Altogether, the trend from the simulated two-parameter
distributions is not present in the three parametric settings.
The cyclical algorithmoverall is notworse or even betterwith
regard to both true and false positives for almost all tested
scenarios.

4 Modeling sea duck abundance

A recent analysis by Smith et al. (2017) investigated the
abundance of wintering sea ducks in Nantucket Sound,
Massachusetts, USA. Spatiotemporal abundance data for
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Fig. 10 Nantucket sound—research area of the seabird study by Smith
et al. (2017). Squares are the discretized segments in which bird abun-
dance was studied. Gray lines indicate all aerial transects flown over
the course of the study. The black polygon indicates the location of
permitted wind energy development on Horseshoe Shoal

common eider (among other species) were collected between
2003 and 2005 by counting sea ducks on multiple aerial strip
transects from a small plane. For the subsequent analysis, the
research area was split in 2.25km2 segments (see Fig. 10).
Researchers were interested in variables that explained and
predicted the distribution of the common eider in the exam-
ined area.

As the data were zero-inflated (75% of the segments
contained no birds) and highly skewed (a small number of
segments contained up to 30,000 birds), a hurdlemodel (Mul-
lahy 1986) was used for estimation. Therefore, the model
was split into an occupancy model (zero part) and an abun-
dance model (count part). The occupancy model estimated
if a segment was populated at all and was fitted by boost-
ing a generalized additive model (GAM) with binomial loss,
i.e., an additive logistic regression model. In the second step,
the number of birds in populated segments was estimated
with a boosted GAMLSS model. Because of the skewed
and long-tailed data, the (zero-truncated) negative binomial
distribution was chosen for the abundance model (compare
Mullahy 1986).

We reproduce the common eidermodel reported by Smith
et al. (2017) but apply the novel noncyclical algorithm; Smith
et al. used the cyclic algorithm to fit the GAMLSS model.
As discussed in Sect. 3.2, we apply the noncyclical algorithm
with inner loss. In short, both distribution parameters, mean
and overdispersion of the abundance model, and the proba-
bility of bird sightings in the occupancymodelwere regressed

on a large number of biophysical covariates, spatial and spa-
tiotemporal effects, and some pre-defined interactions. A
complete list of the considered effects can be found in the
web supplement. To allow model selection (i.e., the selec-
tion between modeling alternatives), the covariate effects
were split into linear and nonlinear base-learners (Hothorn
et al. 2011; Hofner et al. 2011). The step length was set
to sl = 0.3, and the optimal number of boosting iterations
mstop was found via 25-fold subsampling with sample size
n/2 (Mayr et al. 2012). Additionally, we used stability selec-
tion to obtain sparser models. The numbers of variables to
be included per boosting run was set to q = 35, and the
per-family error rate was set to 6. With unimodality assump-
tion, this resulted in a threshold of πthr = 0.9. These settings
were chosen identically to the original choices in Smith et al.
(2017).

4.1 Results

Subsampling yielded an optimal mstop of 2231, split in
mstop,μ = 1871 and mstop,σ = 336. The resulting model
selected 46 out of 48 possible covariates in μ and 8 out of 48
in σ , which is far too complex of a model (especially in μ)
to be useful.

With stability selection (see Fig. 12), 10 effects were
selected for the location: the intercept, relative sea surface
temperature (smooth), chlorophyll a levels (smooth), chro-
mophoric dissolved organic material levels (smooth), sea
floor sediment grain size (linear and smooth), sea floor sur-
face area (smooth), mean epibenthic tidal velocity (smooth),
a smooth spatial interaction, the presence of nearby ferry
routes (yes/no) and two factors to account for changes in 2004
and 2005 compared to the year 2003. For the overdispersion
parameter, 5 effects were selected: sea surface temperature
(linear), bathymetry (linear), the mean (smooth) and stan-
dard deviation (linear) of the epibenthic tidal velocity, and
the linear spatial interaction. For the location, all metric vari-
ables entered themodel nonlinearly.Only sediment grain size
was selected linearly as well as nonlinearly in the model. The
converse was true for the overdispersion parameter: Only the
mean epibenthic velocitywas selected as a smooth effect, and
all others were selected as linear effects. In Fig. 11, the spa-
tial effects for the mean and overdispersion can be seen. The
segment size is based on the spatial covariate with the coars-
est resolution, so different resolutions of the segments and
their stability were not explored further, though it is likely
that this will have some influence on the model performance
and the results in Fig. 11.

4.2 Comparison to results of the cyclic method

Comparing the model with the results of Smith et al. (2017),
the noncyclical model was larger in μ (10 effects, compared
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Fig. 11 Spatial effects for mean (upper figure) and overdispersion
(lower figure) of seabird population. The shaded areas in the both fig-
ures show the research area

to 8 effects), but smaller in σ (5 effects, compared to 7
effects). Chlorophyll a levels, mean epibenthic tidal veloc-
ity, smooth spatial variation and year were not selected for
the mean by stability selection with the cyclical fitting algo-
rithm. On the other hand, bathymetry was selected by the
cyclical fitting method, but not by the noncyclical. For the
overdispersion parameter, the cyclical algorithm selected the
year and the northing of a segment (the north–south posi-
tion of a segment relative to the median) in addition to all
effects selected by the noncyclical variant. Most effects were
selected by both the cyclical and the noncyclical algorithm,
and the differences in the selected effects were rather small.
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Fig. 12 Selection frequencies of the 20 most frequently selected
biophysical covariate base-learners of common eider abundance, deter-
mined by stability selection with q = 35 and PFER = 6. The gray line
represents the corresponding threshold of 0.9

In the simulation study for the negative binomial dis-
tribution (Sect. 3), the noncyclical variant had a smaller
false-positive rate and a higher true-positive rate. Even
though the simulation was simplified compared to this appli-
cation (only linear effects, known true number of informative
covariates, uncorrelated effects), the results suggest to pre-
fer the noncyclical variant. Nonetheless, the interpretation of
selected covariate effects and final model assessment rests
ultimately with subject matter experts.

5 Conclusion

The main contribution of this paper is a statistical model
building algorithm that combines the three approaches of gra-
dient boosting, GAMLSS and stability selection. As shown
in our simulation studies and the application on sea duck
abundance in Sect. 4, the proposed algorithm incorporates
the flexibility of structured additive regression modeling via
GAMLSS, while it simultaneously allows for a data-driven
generation of sparse models.

Being based on the gamboostLSS framework by Mayr
et al. (2012), the main feature of the new algorithm is a new
“noncyclical” fitting method for boosted GAMLSS mod-
els. As shown in the simulation studies, this method does
not only increase the flexibility of the variable selection
mechanism used in gamboostLSS, but is also more time effi-
cient than the traditional cyclical fitting algorithm. In fact,
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even though the initial runtime to fit a single model may be
higher (especially if the base-learner selection is done via the
outer loss approach), this time is regained while finding the
optimal number of boosting iterations via cross-validation
approaches. Furthermore, the convergence speed of the new
algorithm proved to be faster, and consequently, fewer boost-
ing iterations were needed in total.

Regarding stability selection, we observed that the non-
cyclical algorithm often had fewer false positives as well
as more true positives compared to the cyclical variant in the
two-parameter distribution tested in our simulation study. For
high-dimensional cases, however, the differences between
both methods reduced and, especially with regard to the
number of true positives, approximately equal results were
achieved. For three-parameter distribution, the cyclical vari-
ant achieved better values throughout with respect to both
true- and false-positive rates. This may be due to the fact
that for more complex distributions, similar densities can be
achieved with different parameter settings. For example, in a
zero-inflated negative binomial setting, a small location may
be hard to distinguish from a large zero inflation. Obviously,
the behavior of the cyclical variant is more robust in these
situations than the noncyclical variant, which tends to fit very
differentmodels on each subsample and consequently selects
a higher amount of noninformative variables.

In summary, we have developed a framework for model
building in GAMLSS that simplifies traditional optimization
approaches to a great extent. For practitioners and applied
statisticians, the main consequence of the new methodology
is the incorporation of fewer noise variables in the GAMLSS
model, leading to sparser and thusmore interpretablemodels.
Furthermore, the tuning of the new algorithm is far more
efficient and leads to much shorter run times, particularly for
complex distributions.

6 Implementation

The derived fitting methods for gamboostLSS models
are implemented in the R add-on package gamboostLSS
(Hofner et al. 2017). The fitting algorithm can be speci-
fied via the method argument. By default, method is set
to “cyclical” which is the originally proposed algo-
rithm. The new inner variant of the noncyclical fitting can
be selectedwith method = “noncyclic”. Based on the
results of our simulation study,wedecided to only support the
inner variant in the final package. To ensure reproducibility
of the experiments, the state of the package with both inner
and outer variants is kept in a separate github branch for this
publication, which can be found at http://www.github.com/
boost-R/gamboostLSS/tree/stco_paper.

Base-learners and some of the basic methods are imple-
mented in the R package mboost (Hothorn et al. 2010;

Hofner et al. 2014; Hothorn et al. 2017). The basic fitting
algorithm for each distribution parameter is also imple-
mented in mboost. For a tutorial and an explanation of
technical details of gamboostLSS, see Hofner et al. (2016).
Stability selection is implemented in the R package stabs
(Hofner and Hothorn 2017; Hofner et al. 2015), with a
specialized function for gamboostLSS models, which
is included in gamboostLSS itself. The development of
mboost, gamboostLSS and stabs is hosted openly at

http://www.github.com/boost-R/mboost
http://www.github.com/boost-R/gamboostLSS
http://www.github.com/hofnerb/stabs.

Bug reports and requests should be made there. All packages
are also available for installation directly from CRAN.

Acknowledgements We thank Mass Audubon for the use of common
eider abundance data.
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